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deflection is played by a function with certain "smoothness" properties (~~(2) E H,'(Q)). The 
condition yO= E, corresponds to the case in which the deflection at time lo is described 
by a function in ~~(52). 
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MULTILAYER FLOWS OF AN INCOMPRESSIBLE LIQUID OVER AN 
UNEVEN BOTTOM UNDER THE ACTION OF SURFACE PRESSURE* 

K.A. BEZHANOV 

The plane problem of the shear flow of an ideal heavy incompressible 
stratified liquid of finite depth over an uneven bottom is studied. The 
liquid has a finite number of layers and the stratification at their 
boundaries is discontinuous. An exact non-linear integrodifferential 
equation is obtained describing the internal and surface waves generated 
by the irregularities of the bottom , and by surface pressure. The basic 
properties of the spectrum of the linear problem proved in /l/, which 
generalize the results of /2, 3/, are formulated. A solution of the linear 
problem is obtained in the form of a Fourier series in terms of the eigen- 
functions corresponding to the integral Fredholm equation or of the 
equivalent boundary value problem. The case of resonant reinforcement 
of the corresponding mode is discussed for the mean stream velocities 
close to, but smaller than the critical velocity. A non-linear problem 
of a streamlined flow with the formation of an internal two-soliton wave 
is considered for the case in which the mean stream velocities are close 
to and larger than the critical velocity. 

1. Derivation of the basic equations. We consider the plane, steady-state flow of 
an ideal heavy incompressible stratified liquid above an uneven bottom, in the case when a 
known pressure is applied to the free surface of the liquid. The I axis is directed along 
the horizontal level of the bottom , and the y axis is directed vertically upwards. A one- 
dimensional shear flow is specified as 5+-00, with stable discontinuous stratification. 
When a one-dimensional stratified flow is acted upon by a known surface pressure p. (5) and 
by the irregularities of the bottom y,(s), it generates a two-dimensional stratified flow, 
the functions pO(x) and ye(r) are assumed to be continuous and finite, andthesegment I--t,, 

%I is their common carrier. The liquid consists of II layers, the density and tangential 
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component of the velocity vector have first-order discontinuities at their boundaries !/ii ( 1 ) 
(A, = 1, ', .( II), while the pressure and normal component of the velocity vector are continuous. 
Moreover, it is convenient to assume that the space above the free boundary is filled with a 
fictitious fluid of zero density and velocity. In what follows, we shall change to dimen- 
sionless variables taking the depth of the stream h as the unit of length, and the meandensity 

PO and mean velocity of the one-dimensional stream /4/ as the units of density and velocity. 
Using the framework of the formulation of the problem given in /4/, we can formulate the 

following boundary value problem for the perturbation in the ordinate of the stream line 

W (r, 11) in Eulerian-Lagrangian variables, where the Lagrangian coordinate rl gives, as 
Z+ --oo the distance between the unperturbed stream line and the horizontal bottom 

(1.1) 

p(s)($+?) + F,~(wl))- vp(ll)u+,l))]$r)=O 
[W(J,~)~~(J)==-, k=.1,2,...,, a-l 

w(~,O)=%(m), lim w(zr,r))=O 
x---a, 

aZ(rl)=p(q)1,;2(T$ v=$ + 

Here [fly is the jump in the valueofthe function f(x,q) on passing through the k-th 
boundary of separation, and p(q) and v(n) are the density and velocity of the one-dimen- 
sional flow with discontinuities of the first kind at the points q = qlk (k = 0,1,2, . . ..n). IJ@ : 
0, n,, = 1 and satisfying the conditions 

where g is the acceleration due to gravity, Fr is the Froude number, F,w and F,w are non- 
linear operators 

(1.2) 

while the subscripts x and q indicate differentiation with respect to the corresponding 
variables. 

We can reduce the boundary value problem (1.1) to the following non-linear integro- 
differential equation (IDE) with continuous and symmetrizable kernels: 

where dP(q) is the Lebesgue-Stieltjes measure generated by the monotonic function 

P (0) - P-(n) and G(q, E) is Green's function 

G(rl, 5)s 
1 

4(rl)* O,<rl<<E 

s(f)9 E<,<rl<l' 

which is a kernel of the integral Fredholm equation 

m(11)-vSG(ll~&)cp(E)d~L(E)=O 
0 

(1.3) 

P h) = 

(1.4) 

(1.5) 

The integral Eq.Cl.5) has, onthe segment SJ = {q: O,<IJ Q 1) , a denumerable setof simple 
positive real eigenvalues v and an orthonormed system of eigenfunctions 1% (17)) complete 
in L,(P, a), and the resolvent is a meromorphic function of the parameter Y with simple 
poles at the points Y = Y, 
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(1.6) 

From now on, the eigenvalues 
called the critical values of the 

velocities of propagation of long 

will be numbered in increasing order. They will also be 
parameter Y and will have the corresponding critical 

waves cm = T/N',. 
Differentiating Eq.(l.5) with q + nk and using the expression for the derivative of 

G (11, E) from (1.4), we can obtain the formula 

Here and henceforth a prime will denote differentiation. 
If we now invert the Fredholm operator appearing on the left-hand side of Eq.(1.3) and 

use formula (1.7), we can obtain the basic non-linear IDE describing the internal and surface 
waves generated by the irregularities of the bottom and by the surface pressure 

(1.8) 

The essential difference between the IDE (1.8) and (1.3) is the fact that the homogeneous 
equation corresponding to (1.8) does not contain the Lebesgue-Stieltjes measure. It would 
be interesting to solve Eq.Cl.8) numerically and compare the result withtheresults of the 
linear and non-linear theory obtained below. 

2. Study of the linear problem. In order to solve the linear IDE corresponding 
to Eq.Cl.81, we must consider the following integral Fredholm equation with continuous sym- 
metric kernel /l, 4/: 

~(rl.v)-aE,5az(5)r(~,q,v)2(E,~)d~=o 
0 

(2.1, 

We can formulate for Eq.(2.1) an equivalent boundary value problem of the Sturm-Liouville 
problem type, containing two parameters h and v, which can be obtained from the boundary 
value problem (l.l), if we seek the solution of the linear problem of free waves using the 
method of separation of variables 

+-(ea(V)+)- (ha2(rl) + W(n))z==O, II E 52, 

a"(l)+(l,v)- vp(I)z(I,v)=O 

[~'&+Wl)2],=0. Izlb=o 

z (0, v) = 0, k = 1, . . ., n - 1 

8, = {q: 0 < q < 1, Tj + Q, k = 1, . * ., n - 1) 

The following properties of the eigenvalues and eigenfunctions were proved in 
Most of them, applied to the single-layer model and multilayer model without shear 
were known earlier /2, 3, 6, 7/. 

(2.4 

/l, 4, 5/. 
flows, 
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a) All eigenvalues h,(v) of the integral Eq.(2.1) for the boundary value problem (2.2) 
are simple and real for 'v +vi . 

b) If v,<v,< . . . <Y!<... are the critical values of the parameter Y, then for 
v < Y, all eigenvalues h,(y) will be negative. 

c) The functions h,(v) and i;, (Y)/v, 1’ E (0, t-m) are strictly monotonic increasing func- 
tions of the parameter v. 

d) If we arrange the numbers 

1 P(nlK+O)-P(?r--O) 2 
T' f+ (7, + 0) + aa blk -- 0) 

) , k=l,...,n--l 

in decreasing 
formulas will 

where N(q) 
e) For v 

order and denote them by czl 2 cz2 I> . ..> a,,, then the following asymptotic 
hold as Y++co: 

h,(v)-hvS, m=l,..., n 

h,(Y)- Kv, m=n+i,n+Z,...; K=max?$ 
q=_Q b Cd 

is the Brunt-Vaisala frequency. 

= (VI? R+,) the characteristic numbers h,(v), . . ..h! (Y) are positive, and all the 
remaining ones are negative. 

f) The integral Eq.(2.1) or the equivalent boundary value problem (2.2), has a system of 
eigenfunctions complete in L,(Q) and orthonormed with weight aa (rl). 

g) The eigenfunction z,(~,Y) has exactly m - 1 node-type zeros in the interval I) = 

(0, I), and the zeros of the functions z, (% v) and &l&+1 (?7 y) alternate in the same interval. 
When q,z Q, the eigenfunction z,(q,v) vanishes m times since 2, (0,Y) = 0. 

h) If the Brunt-Vaisala frequency has a unique maximum at the point %, then a suf- 
ficiently large vO can be found in any of its &-neighbourhood such that when v>vO, all 
n-l zeros of the eigenfunction z,(q,v) will be concentrated in the segment [no-e, nO + el 
and the internal waves will be captured within a thermal wedge. 

properties a) - e) enable us to draw the dispersion curves shown in the figure. Thus 
we can have, in a stream of a discontinuously stratified liquid, when there are shear flows, 
n wave modes corresponding to the free surface and separation boundaries, with dispersion 
curves intersectingthe straight line h= Kv, and an infinite number of wave modes correspond- 
ing to a continuous stratification within each layer, with dispersion curves lying below the 
straight line h = KY. 

The properties of the spectrum of the linear problem formulated here enable us to solve 
the linear IDE corresponding to Eq.(1.8) , using the Fourier method. If we expand m (5, 4, 
x ht y) and ~(11,~) in a Fourier series over the system {z,(q,v)} complete in L,(Q) and 
substitute it intothelinear IDE, we obtain the following expressions for the unknown Fourier 
coefficients w, (4 : 

d%o 
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Here Xm and X, are the Fourier coefficients of the functions X(n,v) and x (11,v). 
The solution of (2.3), which vanishes together with its derivative as x-+ -00, has the 

form 

w, (z) = w,+ (2) = f%j* f, (5) sin I/z (z - E) dE, h, > 0 

l/lh,r X9 w,(z)= W*_(5)= 2 
s fmE)exp(-VIA,I Ix-El)dL 
-x0 

&l,<O 

(2.4) 

(2.5) 

and finally 

(2.6) 

Thus when YE(Y~,Y~+~), the solution of the linear problem (2.4)-(2.6) is given in the 
form of a sum I = L(v) of harmonic waves, and an infinite number of exponentially decaying 
perturbations /8, 9/. 

In the linear case in question we find that the 1 -th mode is resonantly amplified as 
Y 3 VI + 0 (c--f Cl - 0). In this case the solution simplifies noticeably and reduces to a single 
term of the series (2.6). The analyticity of the functions hl (v) and Zl(n,v) with respect 
to the variable Y in the neighbourhood of the point Y = ~1, was proved in /l/. Therefore 
we find, taking into account the fact that al (v1) = 0, that the following asymptotic formulas 
hold: 

Moreover, formulas (1.61, (1.7) and (2.3) yield the following approximate formulas as 

Y -+ VI + 0: 
'F1(0cpI (0) 

r(E*%v)= v_-y 12.8) 
I 

where the integral in the formula for XI is calculated by substituting into it the expression 
for q(E) from (1.4)) changing the order of integration, and using formula (1.7). Then, if 

Xd 

P = [ Po(sr)d.r=o((V'q-_, S=IXO yc(z)dz=o(l/~) 
-IX, 

(2.9) 

i.e. when the quantities P and s are specifically coordinated with the degree of approximation 
of the mean stream velocity to the critical velocity of propagation of the long wave, then the 
assumptions of the linear theory become valid and formulas (2.4)-(2.9) yield, when r>x,, 

where O(6) is a quantity of the order of P and S. 

3. Derivation of the non-linear equation as V-+v~-o. Let the mean velocity of 
a one-dimensional flow be close to one of the critical velocities of propagationoflong waves 
and exceeding it: c+ Cl + 0 (v -+ v1 - 0). In this case the linear theory can no longer be used 
and the approximate non-linear theory yields a qualitatively novel effect illustrated by the 
appearance of a "precursor" in the form of solitons situated along the vertical in front of 
the streamlined perturbation sources , and of the solitons also distributed along the vertical, 
but behind the streamlined sources. 

When v+vI- 0, the asymptotic formulas (2.8), in which we put All = i hold, and we 
also have 
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(X.1) 

Substituting formulas (2.8) and (3.1) into the IDE (1.8), we obtain 

(3.2) 

From (3.2) it follows that we can write , to a first approximation, 

*u (G 11) = u (S)cpL (11) (3.3) 
Moreover we can write the approximate formulas for F,w and F,lC? in the form 

F,w v-LUw,7JJll ,(3.1) 

Substituting (3.3) and (3.4) into (3.2), we obtainthe following non-linear differential 
equations: 

(3.(i) 

Below we assume that the integral in the expression for the constant d in formulas (3.6) 
does not vanish. The study of the degenerate case ((lid) = 0) poses great technical dif- 
ficulties and is of no great interest. 

4. Study of the non-linear problem. The non-linear Eq. (3.5) is still sufficiently 
complicated to make its analytic investigation difficult; therefore we shall construct its 
approximate solution below. 

(-x0, x,,) and ]z,, -km). 
To do this we divide the 5 axis into three intervals: (--CO,-_z,,], 

The solution of (3.5) becomes simpler for each of these intervals, and 
the solutions will merge at the points _&r, by virtue of the suitable choice of arbitrary 
constants. 

When lx I b 20, we seek a long-wave approximation of Eq.(3.5). This will become homo- 
geneous since the functions p,,(m) and y,(z) are finite. We expand the independent variable 
in terms of the small parameter E, and seekthe solution in the form of a series in powers of 
E, restricting ourselves to the first term of the expansion 

r = ebs, u = &%V (%) + . . . 
This yields the stationary Korteweg-de Vries equation 

~‘"(~)t~-v"(~)-u(z)=O 

which has a two-parameter family of periodic solutions in the form of a knoidal wave /ll/. 
Finally we have 

u(r)= 
I 

u-(5), , Lr-< - IO 

U,(X)? z 2x0 

uF (2) = .9d 
t 
CL + @ - a) ma (+ & (z ) zo) * A+ sj) 

p = (1 - a + 6)/2, 6 = J/(1 - a)(1 +- 34 
y = (a - 1 + q/2, s2 = (B - a)/@ + a) 

(4.1) 

where a, A_ and A+ are arbitrary positive constants. 
When CC+O, formulas (4.1) yield p--+l,y-+O,6-,1,s-+l, and the knoidal wave degener- 

ates into a soliton. In this case 
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u,(5)=,adsech*(~~b(3:f2~)I):A~) (4.2) 

The arbitrary constant A_ and A, are obtained after finding the approximate solution of 
Eq.(3.5) on the segment [-x,,z,l and matching the solutions and their derivatives at 

x0. Using formulas (4.2) we obtain 

u (TX,,) = 2d (1 - Br’), B+ = th A* 

u’ (‘f x0) = f 2bdB, (1 - BT2) 

When .rE (- zO,zO), we obtain the solution of (3.5) assuming that 

x, = 0 (1) s = 0 (ES), P = 0 (ES) 

u (Z) = 0 (E'), L“ (X) = 0 (E3), U' (X) = 0 (Es) 

In this case Eq.(3.5) simplifies considerably and takes the form 

$=b2(~o~o(2) - w&)) 

x = _+ 

(4.3) 

(4.4) 

Solving the Cauchy problem for Eq.(4.4) with initial conditions (4.3) at the point -10, 
we obtain 

X 
du -_=bS 
dz s (W,(E) - xoy, (E))G - e3bdB_ (1 -B-7 (4.5) 

-.x0 

u (4 = b2 i (x - 5) bwo (5) - XOYO (5)) dE + 
-r. 

e2d (1 - B_2) - e3bdB_ (1 - B_a) (z + PJ 

Matching the solutions (4.2) and (4.5) at the point XO we obtain an algebraic system 
for determining the constants B_ and B,. From (4.3) and (4.5) we obtain 

B_ (1 - E2) = -& (x,P - xoS)> A- = A, (4.6) 

When O<B, ,<I, system (4.6) has two solutions which satisfy the inequalities 

(4.i) 

i.e. when the parameters of the incoming flow and e are all given, then the two-soliton 
solution may exist only when the quantities P and S are related to each other in a prescribed 
manner, and out of the two solutions we must choose one which is physically realizable. 

For fixed e and P-0, s-+0, the first solution degenerates into a one-dimensional 
flow in which case the solitons diverge and recede to infinity, and the second solution 
degenerates into a unified wave since the solitons converge and merge with each other. Since 
the one-dimensional flow is unstable when v-v1 - 0 while the unified wave is stable, we 
can assume that the second equation holds /12/. It would be of interest to test the non- 
stationary problem for stability , and to investigate the problems of the existence of the 
approximate solutions obtained. 

From the formulas (4.2) and (4.6) it follows that when the parameters of one-dimensional 
flow are given, two solitons with apices at the points -J-(x0 + 2A/bF) will be distributed 
symmetrically about the origin of coordinates, with their distribution depending on the 
quantities P,S and e, while the amplitudes will depend only on e. 

Fusing the solution (4.5) with the solution for the knoidal wave (4.1) and the soliton 
solution (4.2) at x<-x0 with solution (4.5) and the solution for the knoidal wave (4.1) at 
z> x0, we obtain a system of two equations-for determining a, A_ and A+, i.e. we obtain 

a one-parameter family of solutions which, as a-0, transforms into the two-soliton sol- 
ution obtained above. 

5. One-layer and two-layer models. In the case of a one-layer model p(n) = V(n) = 
1, and we obtain, from the boundary value problem (2.2), the corresponding normed eigenfunc- 
tion 

T%(n) = r), ? E Q (5.1) 
The condition (4.8) takes the form 

0 < P - S < 4e3/9 (5.2) 
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and from this it follows that for a two-soliton solution to exist 
total pressure on the free surface should be greater than S. For 
surface pressure we find that inthecase of obstruction condition 
homogeneous liquid there is no two-soliton solution. 

it is necessary that the 
example, where there is no 
(5.2) implies that in a 

In the case of a two-layer model, we consider the case of the piecewise-constant density 
distribution given in /4/. When v +vl - 0, the normed eigenfunction (pl (n) has the form 
(5.1) and condition (4.7) is identical with (5.2), while when v--to,- 0, we have 

vz (11) = __f__- 
( 

h,r1. 0 *, 11 <.. h, 

h,h,I/& h,(l-ll), h,,<'I<l 

where Ap> 0 is a small density change and h, j-h, = 1. Condition (4.7) for a two-soliton 
solution to exist takes the form 

0 <; (h, - h,)S < 4E3/(9h,3h,* (Ap)%) 

and is satisfied for some s and Ap for the case when the upper layer is not thicker than 
the bottom layer irrespective of the value of the surface tension. 
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